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Bose-Einstein condensation in random directed networks
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We consider the phenomenon of Bose-Einstein condensation in a random growing directed network. The
network grows by the addition of vertices and edges. At each time step the network gains a vertex with
probability p and an edge with probability-1p. The new vertex has a fithesa,b) a,b>0, with probability
f(a,b). A vertex with fitness §,b), with in-degreei and out-degre¢ gains a new incoming edge with rate
a(i+1) and an outgoing edge with rat€j+1). The Bose-Einstein condensation occurs as a function of
fitness distributiorf (a,b).
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I. INTRODUCTION [10], introducing a dependence between the vertex fitness
and an energy. As each vertex has two fitnegses in-
Recently there has been much interest in random growingegree and out-degre¢hen it is necessary to assign two
networks[1—3], both from the point of view of theoretical different energy levels to represent each vertex. This is de-
mode“ng as well as the empirica| Study of real networks_ta”ed in the first section, together with the description of
There is considerable evidence that while traditional Brdo €dges in terms of particles assigned to two energy levels.

Renyi random graphs have a Poisson degree distrib[4ipn The necessary coexistence of two subsystems forming the
real graphs and random growing graphs have a power-lafj€twork and the formulation of an equilibrium condition in a
degree distribution. formal way is discussed in detail in Secs. Ill and IV.

Of particular interest are directed networks, which can be The occurrence of Bose-Einstein condensation, and its in-

used to model systems in which directed flow takes placeterpretation in a physical framework makes it possible to
Such networks include the world wide wéb], the phone- describe the directed network in terms of canonical concepts

call graph[6], and the citation grapfi]. of statistical physics, such as a phase diagram and first and
As a complement to computer simulations and exact sose€cond order phase transitions. These are introduced in the

lutions of simplified systems, thermodynamic formulationsfollowing sections. _ _
have been used to Study a number of Comp|ex Cooperative In the conclusions we emphaSIZe the usefulness of this
systems including granular media, econophysics, breakin rmulation in providing a clear and concise interpretation of
phenomena, and many others. In a recent pigleBianconi  different phenomena in networks. So, the possibility of co-
and Barabsi (BB) mapped the different behavior of random €xistence of phases in which the in-degree distribution ex-
growing networks with fitness onto the thermodynamicallyhibits a clear winner whereas the out-degree shows scale-free
distinct phases of a free Bose gas. The fitness model predickhavior, or the simultaneous existence of two different win-
that, in the large network limit, the fittest node will have the nNers(bipolarity) and the conditions for its existence are pre-
most links. This is called thét-get-rich(FGR) phase. Unlike dicted in thermodynamic language.
the scale-free mod€EFM), in which the degree distribution
of the network is power law, the FGR behaviphase in the
thermodynamic languagéas nodes with a very large degree
which dominate the network. Another phase revealed in Ref. In Ref.[8], a correspondence between fithessand en-
[8] is the Bose-Einstein condensati@EC), when the fittest  ergy e given by
node acquires a finite fraction of the total degree. In contrast
to BEC, in the FGR phase the richest node is not an absolute e B (1)
winner, since its share of the linkse., the ratio of its degree K
and the total degree of the netwoidecays to zero for large
system sizes, whereas in BEC the winner maintains its shamas introduced. In our model the vertices have, in general,
irrespective of system size. different fitnesses andb for the addition of an in- or out-
In this case, the fact that this ratio is constant correspondgdegree. As in Refl10], here the model consists of the addi-
to the extensivity property of a Bose gas, when the gas keepg®n of bare verticegi.e., without edges, but with fitness
a finite fraction of its particles in the ground state. In thisfor in-degree and for out-degregto the network with prob-
paper we examine the phenomenon of Bose-Einstein condenbility p, and the creation of directed edges between vertices
sation, which was considered for an undirected graph irwith probabilityq=1—p.
Refs.[8,9] on the random directed growing network intro- A kinetic equation describing the process of directed net-
duced in Ref[10]. works must include the kinetics of both in-degree and out-
To do this we work with the model introduced in Ref. degree simultaneously since they coexist and influence each

Il. THE MODEL
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other. Then, the kinetic equation for the mean number ofnd

vertices with in-degreeé and out-degregis, as in Ref[10],

M= 2 (j+1)e 22Nij(ey, o). )

ija

dN;i(a,b a )
Mifad) LN 1= (1 DN
As we distinguish between incoming and outgoing edges,
and their respective fitnesses, when going to the energy rep-
resentation the edges and their fithesses must also be distin-
@) guished as belonging to different isolated subsystems of the
same system. Let us denote the subsystems as 1 and 2. So,

where the fithesses,b are chosen from the fitness distribu- the creation of a vertex in the network implies the simulta-
tion f(a,b). The normalization factors; andM, are given ~ N€ous creation of an energy level in each sub-system, i.e.,
by g,andes,.
The creation of an edge joining two vertices implies the
3) simultaneous creation of one particle in each subsystem in
the energy levels corresponding to the fitnesses of the verti-
ces gaining an in- and out-degree.
It should be noted that we are doing a simultaneous de-
scription of two isolated subsystems which compose the
MZZE (j+1)bN;(a,b). (4) whole system(the networl. These subsystems do not ex-
ijab change energy or particles, but are correlated in the sense

he f i the fi brack that the creation of an energy lev@l particlg in one of the
T e.f|rst term!nt e first Square brac etg of EZ).rgpresents subsystems implies the simultaneous phenomenon in the
the increase iN;; when vertices with in-degree-1 and  jiner

out-degreej gain an incoming edge and the second term gy gefinition of the model, the total number of particles
represents the corresponding loss. The second square bragks.cses linearly with time, so

ets contain the analogous terms for outgoing edges and the ’

last term ensures the continuous addition of new vertices

qb . _
+ M_Z[JNi,j—l_(J +1)N;jj 1+ pdiodjof(asb),

M1=2b (i+1)aN;(a,b)
ija

and

with fitnessesa, b. -2 Nj(er,e0)=pt. (10)
The translation of this problem into an energetic formula- h1.e1.e2

tion is straightforward. We associate the addition of a vertex .

with fitnessesa,b to the network with the creation of two Let us define the reduced moments andm;, by

energy levels; one representing the fitness of the incoming

edge and the other for the outgoing edge. This means that the My (t)=mqt, 1D

edge can be mapped into two separate isolated subsystems.

Then the creation of a directed edge corresponds to the cre- Mo(t) =myt, (12)

ation of two particles, one in each subsystem, simulta-

neously. The particles are created in the energy levels corrénd introducen;; as

sponding to incoming fithess of the receiving vertex and the

outgoing fitness of the emitter vertex.

Then, using the energy variables, rather than the fitness, ) )
As shall be seen these magnitudes will be useful to cal-

we have L .
- culate the characteristics of the network. Then, following the
a=e Ao, (5  procedure in Ref[10], we can show that
b=e P22, (6)
m1=i e 2Aei(i+ 1)n;;
and My ijeq1.2;
IN:: (gq,¢e e Bia1 Bie
Il(&tl 2):q Ml [|N|,1’J_(|+1)N|]] +pfe B lf(81182)d81d82 (14)
qe7ﬁ282 ] ) and
+ M—Z[JNi,j—l_(J +1)N;j;]
= € + ..
+Ppdiodjof(er,e2). (7) M My i je.en © (+Dn;
And the normalizations are rewritten as B
"‘pf e P2°2f(g,8,)de de,, (19

M1=ij§b (i+1)e PPN (1, 8)

8

which determinesn; andm, as functions op, 8;, andg3,.
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A. The coexistence of two systems

p dsldszf £1,€2)

In this representation, as we already pointed out, the ad- TP =1 (29
dition of a vertex means the creation of two energy levels,
each corresponding to its fitness. When an edge joining two
vertices is created, we add one particle in each correspondingis means that
level.

Th.e d'istri'bution of ir_1- anq out-degree then corresponds to de,de,f(eq,e0) de,de,f(eq,e5)
the distribution of particles in systems 1 and 2, —=| —————. (26

efiler—mi) 1 ehalea—ma) 1

L(i+2)T(1+eflerr) er )
gi=2 n=p (i + 2+ efler— k) e”e Mt (e1,62)  Unlike BB, this is a different condition generated by the
: (16) model. Let us denote it as@eneralized equilibrium condi-
tion. A strong equilibriumcondition implies that

is the number of vertices with in-degréeand

g1=¢ 2
T(j+1)T(1+eflea—r2) v @
hj=2 = : — ety 6y)
i [ (j+2+eflezmr2)) and
17
is the number of vertices with out-degrgd-or large degree M= M2 (28

their asymptotic expressions are
Ber This condition will be discussed later. In this formalism the
gi~i (e ) (18)  occupation probability is, then,

and
_b 1
hj~j7(1+el3(82*#2)), (19) nk(sk,,u.k)— a eﬁk(gk*l’«k)—l (29)

where we have introduced ) - )
for k=1,2, representing the probability for a given edge to

o my belong to a given vertegprobability of a particle to belong
MK—E 20 0 an energy level If, now, the fitness distribution is sepa-
rable then

for k=1 andk=2 aschemical potentialsUnlike BB, the

chemical potential is introduced here as an exact expression, f(eq,e5)=F1(e)fa(es) (30)
not as an asymptotic one.
B. “Equilibrium” condition and
The equations fom; andm, can be transformed by in- d
. K . p Skf(b‘k
troducing the generating function =1 (3D
eﬂk(ak ) — 1
9(x.y,81,82)= 2, X'yIny(e1,e5), (21) _
i separately for each systek+1,2. In each casey, is the
solution of this equation, which depends on the density of
where statesf,(¢).
9(1,1e1,e2)=pf(e1,e2) (22
C. Bose-Einstein condensation
with . . .
To illustrate, let us start with a particular case, when
ig pe Bies f(e)=Ce? with 0<e<en,. The normalizationC=(6
— (Lle1eg)=— N p—— (23)  +1)eltl as in Ref[8].
X S e Then the integral in Eq(25) becomes
and (Bu) = p(6+1) dee’ 1 32
99 11y o PE 24 H T et ) e
W( e1.e2)= e*Bzﬂz[l_e*ﬁ’z(Szfﬂz)] ) (24
But this integral reaches its maximum value whgn
Then the equations fan, (k=1,2) become =0. Then, if for a given value oB we have
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FIG. 1. Phase diagram. FIG. 2. First and second order phase transitions.
def(e) means that the equilibrium is brokdine., in a computer
f oho_ l<l, (33 simulation we would impose temperatures that do not satisfy

Eqg. (26)]. Then there can be a winner in one of the phases.
One of the vertices accumulates, say, most of the in-degrees,
then we have a BEC. If we calculate the temperature fotoming from the other vertices. If both phases are in BEC
BEC in this particular case, we obtain there is a vertex with most of the incoming and another with
most of the outgoing edges. Then both vertices will be highly

_ [ p B correlated.
Tge= —I'(6+2)¢(6+1) (34
€max | d
Unlike BB, the factor p/q) appears here. Ip=q we E. Out of equilibrium first order phase transition
recover BB result. Even in this simple examplgg: may be Although more complicated situations are possible, let us
different for the subsystems 1 and 2, if the valueéofs illustrate the cas@gg;=Tge,. IN Fig. 2 pointA represents
different. In a more general form, we can state the conditionthe case when both subsystems are in the FGR phase. If, for
for Bose-Einstein condensation. Then, as example, we make the simulations with the parameters given
by A, then there will be a FGR and a BEC phase coexisting,
p [ de,de,f(eq,e,) but notin equilibriumsince one of them satisfies E§5) but
1By i) = aJ WZl (35  not the other. There is a coexistence of phases out of equi-

librium. We might call this arout of equilibrium first order
) N phase transitionThe motion alongAAA,- - - leads to the
fork=1,2, if I(Bx,m) <1 then BEC occurs. The conditions region in which BEC occurs for both phases. All we know in

for BEC depend orf(&;,¢5). the BEC region is that none of the subsystems satisfies Eq.
(35).
D. Phase diagram The concept of equilibrium in this model is purely formal

since the subsystems are not in contact, but it is a comfort-

Below Tge there is BEC. Above it the phase is fit-get- CEbIe tool to make a map between directed networks and
t

richer as in Ref[8], but here both phases must be considere
for both systems. Then, a phase diagram can be drawn wi
the temperature$,=(1/8;) and T,=(1/8,) characterizing
each subsystertFig. 1).

Imposing a given dependence of fithess with energy so If one of the systems is such thite) = 5(e), then Eq.

that (31) gives

ose-Einstein statistics.

F. The scale-free model

f deqdesf(eq,89) f deqdeyf(eq,e9)

p j—
e.Bl(sl_,U«l) -1 eﬁz(SZ—,uz) -1 (36) a -, — 1, (37)
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then can be adopted to describe the change in the behavior of the
directed edges in terms of Bose statistics.
gi~i~(@re P _j-(2+pla) (39 In this formulation, as in that of BB, the temperature plays
the role of a dummy variable. Real systems are characterized
with a corresponding expression fby. If p=q the scale- by the functional form of the distribution function of fitness
free model is recovered with a degree distributi®  and there is ngB to consider. It only emerges when we
~k~3. Thus the model with directed edges gives the possitranslate from the language of fitness to that of energies. But
bility of a scale-free phase for both in the in-degree and théhe formulation of networks in terms of quantum statistics
out-degree. and the introduction of temperature is an elegant and simple
description of the behavior of networks under different con-
ditions. In this sense, the temperature plays its role in the
simulations of the networks, determining the strength of the
If in Fig. 2 we move in such a way as to cross into thedependence between the fitness and its associated energy,
BEC region through the poir8 then BEC occurs simulta- and this dependence is reflected in the behavior of the net-
neously for both phases. No coexistence of phases will occuwork by determining its position in the phase diagram.
the system goes from FGR to BEC or vice-versa instantly. Though phase diagrams and phase transitions are not ex-
This is asecond order phase transiti@ince the system as a clusive to thermodynamic formulatiorisee, e.g., Dorogovt-
whole changes its phase. Then the pdihis the critical ~ sev and Mendefl1]), such a formulation is a very powerful
point for the transition. tool to describe different phases of random directed net-
BEC is itself a second order phase transition since it afworks, where the presence of directed edges make the de-
fects the system as a whole, so that when subsystem 1 orsgription in terms of fitness difficult. Considering this net-
experiences BEC, the subsystem itself suffers a second ord&ork as a thermodynamic system, makes it simple to
phase transition, but our system contains both subsystemsufderstand, provided we appropriately interpret the thermo-
and 2 so that when they are in different phases we considéynamic parameters.
our whole system as composed of two phases. ACKNOWLEDGMENTS
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