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Bose-Einstein condensation in random directed networks
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We consider the phenomenon of Bose-Einstein condensation in a random growing directed network. The
network grows by the addition of vertices and edges. At each time step the network gains a vertex with
probability p and an edge with probability 12p. The new vertex has a fitness (a,b) a,b.0, with probability
f (a,b). A vertex with fitness (a,b), with in-degreei and out-degreej, gains a new incoming edge with rate
a( i 11) and an outgoing edge with rateb( j 11). The Bose-Einstein condensation occurs as a function of
fitness distributionf (a,b).
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I. INTRODUCTION

Recently there has been much interest in random grow
networks@1–3#, both from the point of view of theoretica
modeling as well as the empirical study of real networ
There is considerable evidence that while traditional Erd¨s-
Renyi random graphs have a Poisson degree distribution@4#,
real graphs and random growing graphs have a power
degree distribution.

Of particular interest are directed networks, which can
used to model systems in which directed flow takes pla
Such networks include the world wide web@5#, the phone-
call graph@6#, and the citation graph@7#.

As a complement to computer simulations and exact
lutions of simplified systems, thermodynamic formulatio
have been used to study a number of complex coopera
systems including granular media, econophysics, brea
phenomena, and many others. In a recent paper@8#, Bianconi
and Baraba´si ~BB! mapped the different behavior of rando
growing networks with fitness onto the thermodynamica
distinct phases of a free Bose gas. The fitness model pre
that, in the large network limit, the fittest node will have t
most links. This is called thefit-get-rich~FGR! phase. Unlike
the scale-free model~SFM!, in which the degree distribution
of the network is power law, the FGR behavior~phase in the
thermodynamic language! has nodes with a very large degre
which dominate the network. Another phase revealed in R
@8# is the Bose-Einstein condensation~BEC!, when the fittest
node acquires a finite fraction of the total degree. In cont
to BEC, in the FGR phase the richest node is not an abso
winner, since its share of the links~i.e., the ratio of its degree
and the total degree of the network! decays to zero for large
system sizes, whereas in BEC the winner maintains its s
irrespective of system size.

In this case, the fact that this ratio is constant correspo
to the extensivity property of a Bose gas, when the gas ke
a finite fraction of its particles in the ground state. In th
paper we examine the phenomenon of Bose-Einstein con
sation, which was considered for an undirected graph
Refs. @8,9# on the random directed growing network intr
duced in Ref.@10#.

To do this we work with the model introduced in Re
1063-651X/2003/68~5!/056118~5!/$20.00 68 0561
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@10#, introducing a dependence between the vertex fitn
and an energy. As each vertex has two fitnesses~for in-
degree and out-degree! then it is necessary to assign tw
different energy levels to represent each vertex. This is
tailed in the first section, together with the description
edges in terms of particles assigned to two energy levels

The necessary coexistence of two subsystems forming
network and the formulation of an equilibrium condition in
formal way is discussed in detail in Secs. III and IV.

The occurrence of Bose-Einstein condensation, and its
terpretation in a physical framework makes it possible
describe the directed network in terms of canonical conce
of statistical physics, such as a phase diagram and first
second order phase transitions. These are introduced in
following sections.

In the conclusions we emphasize the usefulness of
formulation in providing a clear and concise interpretation
different phenomena in networks. So, the possibility of c
existence of phases in which the in-degree distribution
hibits a clear winner whereas the out-degree shows scale
behavior, or the simultaneous existence of two different w
ners~bipolarity! and the conditions for its existence are pr
dicted in thermodynamic language.

II. THE MODEL

In Ref. @8#, a correspondence between fitnessh and en-
ergy e given by

h5e2b« ~1!

was introduced. In our model the vertices have, in gene
different fitnessesa andb for the addition of an in- or out-
degree. As in Ref.@10#, here the model consists of the add
tion of bare vertices~i.e., without edges, but with fitnessa
for in-degree andb for out-degree! to the network with prob-
ability p, and the creation of directed edges between verti
with probability q512p.

A kinetic equation describing the process of directed n
works must include the kinetics of both in-degree and o
degree simultaneously since they coexist and influence e
©2003 The American Physical Society18-1
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other. Then, the kinetic equation for the mean number
vertices with in-degreei and out-degreej is, as in Ref.@10#,

]Ni j ~a,b!

]t
5

qa

M1
@ iNi 21,j2~ i 11!Ni j #

1
qb

M2
@ jNi , j 212~ j 11!Ni j #1pd i0d j 0f ~a,b!,

~2!

where the fitnessesa,b are chosen from the fitness distrib
tion f (a,b). The normalization factorsM1 andM2 are given
by

M15(
i jab

~ i 11!aNi j ~a,b! ~3!

and

M25(
i jab

~ j 11!bNi j ~a,b!. ~4!

The first term in the first square brackets of Eq.~2! represents
the increase inNi j when vertices with in-degreei 21 and
out-degreej gain an incoming edge and the second te
represents the corresponding loss. The second square b
ets contain the analogous terms for outgoing edges and
last term ensures the continuous addition of new verti
with fitnessesa,b.

The translation of this problem into an energetic formu
tion is straightforward. We associate the addition of a ver
with fitnessesa,b to the network with the creation of two
energy levels; one representing the fitness of the incom
edge and the other for the outgoing edge. This means tha
edge can be mapped into two separate isolated subsys
Then the creation of a directed edge corresponds to the
ation of two particles, one in each subsystem, simu
neously. The particles are created in the energy levels co
sponding to incoming fitness of the receiving vertex and
outgoing fitness of the emitter vertex.

Then, using the energy variables, rather than the fitn
we have

a5e2b1«1, ~5!

b5e2b2«2, ~6!

and

]Ni j ~«1 ,«2!

]t
5

qe2b1«1

M1
@ iNi 21,j2~ i 11!Ni j #

1
qe2b2«2

M2
@ jNi , j 212~ j 11!Ni j #

1pd i0d j 0f ~«1 ,«2!. ~7!

And the normalizations are rewritten as

M15(
i jab

~ i 11!e2b1«1Ni j ~«1 ,«2! ~8!
05611
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M25(
i jab

~ j 11!e2b2«2Ni j ~«1 ,«2!. ~9!

As we distinguish between incoming and outgoing edg
and their respective fitnesses, when going to the energy
resentation the edges and their fitnesses must also be d
guished as belonging to different isolated subsystems of
same system. Let us denote the subsystems as 1 and 2
the creation of a vertex in the network implies the simul
neous creation of an energy level in each sub-system,
«1and«2.

The creation of an edge joining two vertices implies t
simultaneous creation of one particle in each subsystem
the energy levels corresponding to the fitnesses of the v
ces gaining an in- and out-degree.

It should be noted that we are doing a simultaneous
scription of two isolated subsystems which compose
whole system~the network!. These subsystems do not e
change energy or particles, but are correlated in the se
that the creation of an energy level~a particle! in one of the
subsystems implies the simultaneous phenomenon in
other.

By definition of the model, the total number of particle
increases linearly with time, so

(
i , j ,«1 ,«2

Ni j ~«1 ,«2!5pt. ~10!

Let us define the reduced momentsm1 andm2 by

M1~ t !5m1t, ~11!

M2~ t !5m2t, ~12!

and introduceni j as

Ni j ~ t !5ni j t. ~13!

As shall be seen these magnitudes will be useful to c
culate the characteristics of the network. Then, following
procedure in Ref.@10#, we can show that

m15
q

m1
(

i , j ,«1 ,«2

e22b1«1~ i 11!ni j

1pE e2b1«1f ~«1 ,«2!d«1d«2 ~14!

and

m25
q

m2
(

i , j ,«1 ,«2

e22b2«2~ j 11!ni j

1pE e2b2«2f ~«1 ,«2!d«1d«2 , ~15!

which determinesm1 andm2 as functions ofp, b1, andb2.
8-2
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A. The coexistence of two systems

In this representation, as we already pointed out, the
dition of a vertex means the creation of two energy leve
each corresponding to its fitness. When an edge joining
vertices is created, we add one particle in each correspon
level.

The distribution of in- and out-degree then correspond
the distribution of particles in systems 1 and 2,

gi5(
j

ni j 5p
G~ i 11!G~11eb(«12m1)!

G~ i 121eb(«12m1)!
eb(«12m1) f ~«1 ,«2!

~16!

is the number of vertices with in-degreei, and

hj5(
i

ni j 5p
G~ j 11!G~11eb(«22m2)!

G~ j 121eb(«22m2)!
eb(«22m2) f ~«1 ,«2!

~17!

is the number of vertices with out-degreej. For large degree
their asymptotic expressions are

gi; i 2(11eb(«12m1)) ~18!

and

hj; j 2(11eb(«22m2)), ~19!

where we have introduced

mk5
mk

q
~20!

for k51 and k52 as chemical potentials. Unlike BB, the
chemical potential is introduced here as an exact express
not as an asymptotic one.

B. ‘‘Equilibrium’’ condition

The equations form1 and m2 can be transformed by in
troducing the generating function

g~x,y,«1 ,«2!5(
i , j

xiy jni j ~«1 ,«2!, ~21!

where

g~1,1,«1 ,«2!5p f~«1 ,«2! ~22!

with

]g

]x
~1,1,«1 ,«2!5

pe2b1«1

e2b1m1@12e2b1(«12m1)#
~23!

and

]g

]y
~1,1,«1 ,«2!5

pe2b2«2

e2b2m2@12e2b2(«22m2)#
. ~24!

Then the equations formk (k51,2) become
05611
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qE d«1d«2f ~«1 ,«2!

ebk(«k2mk)21
51. ~25!

This means that

E d«1d«2f ~«1 ,«2!

eb1(«12m1)21
5E d«1d«2f ~«1 ,«2!

eb2(«22m2)21
. ~26!

Unlike BB, this is a different condition generated by th
model. Let us denote it as ageneralized equilibrium condi-
tion. A strong equilibriumcondition implies that

«15«2 ~27!

and

m15m2 . ~28!

This condition will be discussed later. In this formalism th
occupation probability is, then,

nk~«k ,mk!5
p

q

1

ebk(«k2mk)21
~29!

for k51,2, representing the probability for a given edge
belong to a given vertex~probability of a particle to belong
to an energy level!. If, now, the fitness distribution is sepa
rable then

f ~«1 ,«2!5 f 1~«1! f 2~«2! ~30!

and

p

qE d«kf ~«k!

ebk(«k2mk)21
51 ~31!

separately for each systemk51,2. In each case,mk is the
solution of this equation, which depends on the density
statesf k(«).

C. Bose-Einstein condensation

To illustrate, let us start with a particular case, wh
f («)5C«u with 0,«,«max. The normalizationC5(u
11)/«max

u11 as in Ref.@8#.
Then the integral in Eq.~25! becomes

I ~b,m!5
p~u11!

q«max
u11 E deeu

eb(«2m)21
51. ~32!

But this integral reaches its maximum value whenm
50. Then, if for a given value ofb we have
8-3
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E d« f ~«!

eb«21
,1, ~33!

then we have a BEC. If we calculate the temperature
BEC in this particular case, we obtain

TBE5
1

«max
H p

q
G~u12!z~u11!J 2(1/u11)

. ~34!

Unlike BB, the factor (p/q) appears here. Ifp5q we
recover BB result. Even in this simple example,TBE may be
different for the subsystems 1 and 2, if the value ofu is
different. In a more general form, we can state the condit
for Bose-Einstein condensation. Then, as

I ~bk ,mk!5
p

qE d«1d«2f ~«1 ,«2!

ebk(«k2mk)21
51 ~35!

for k51,2, if I (bk ,mk),1 then BEC occurs. The condition
for BEC depend onf («1 ,«2).

D. Phase diagram

Below TBE there is BEC. Above it the phase is fit-ge
richer as in Ref.@8#, but here both phases must be conside
for both systems. Then, a phase diagram can be drawn
the temperaturesT15(1/b1) andT25(1/b2) characterizing
each subsystem~Fig. 1!.

Imposing a given dependence of fitness with energy
that

E d«1d«2f ~«1 ,«2!

eb1(«12m1)21
ÞE d«1d«2f ~«1 ,«2!

eb2(«22m2)21
~36!

FIG. 1. Phase diagram.
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means that the equilibrium is broken@i.e., in a computer
simulation we would impose temperatures that do not sat
Eq. ~26!#. Then there can be a winner in one of the phas
One of the vertices accumulates, say, most of the in-degr
coming from the other vertices. If both phases are in B
there is a vertex with most of the incoming and another w
most of the outgoing edges. Then both vertices will be hig
correlated.

E. Out of equilibrium first order phase transition

Although more complicated situations are possible, let
illustrate the caseTBE15TBE2. In Fig. 2 pointA represents
the case when both subsystems are in the FGR phase. I
example, we make the simulations with the parameters gi
by A1 then there will be a FGR and a BEC phase coexisti
but notin equilibriumsince one of them satisfies Eq.~35! but
not the other. There is a coexistence of phases out of e
librium. We might call this anout of equilibrium first order
phase transition. The motion alongAA1A2••• leads to the
region in which BEC occurs for both phases. All we know
the BEC region is that none of the subsystems satisfies
~35!.

The concept of equilibrium in this model is purely form
since the subsystems are not in contact, but it is a comf
able tool to make a map between directed networks
Bose-Einstein statistics.

F. The scale-free model

If one of the systems is such thatf («)5d(«), then Eq.
~31! gives

p

q

1

e2bm21
51, ~37!

FIG. 2. First and second order phase transitions.
8-4
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then

gi; i 2(11e2bm); i 2(21p/q) ~38!

with a corresponding expression forhj . If p5q the scale-
free model is recovered with a degree distributionPk
;k23. Thus the model with directed edges gives the po
bility of a scale-free phase for both in the in-degree and
out-degree.

G. Second order phase transition

If in Fig. 2 we move in such a way as to cross into t
BEC region through the pointB then BEC occurs simulta
neously for both phases. No coexistence of phases will oc
the system goes from FGR to BEC or vice-versa instan
This is asecond order phase transitionsince the system as
whole changes its phase. Then the pointB is the critical
point for the transition.

BEC is itself a second order phase transition since it
fects the system as a whole, so that when subsystem 1
experiences BEC, the subsystem itself suffers a second o
phase transition, but our system contains both subsystem
and 2 so that when they are in different phases we cons
our whole system as composed of two phases.

III. DISCUSSION

We have studied Bose-Einstein condensation in a rand
growing network model. In this model, with a formulatio
considering incoming and outgoing edges, a formal anal
,

la
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can be adopted to describe the change in the behavior o
directed edges in terms of Bose statistics.

In this formulation, as in that of BB, the temperature pla
the role of a dummy variable. Real systems are character
by the functional form of the distribution function of fitnes
and there is nob to consider. It only emerges when w
translate from the language of fitness to that of energies.
the formulation of networks in terms of quantum statist
and the introduction of temperature is an elegant and sim
description of the behavior of networks under different co
ditions. In this sense, the temperature plays its role in
simulations of the networks, determining the strength of
dependence between the fitness and its associated en
and this dependence is reflected in the behavior of the
work by determining its position in the phase diagram.

Though phase diagrams and phase transitions are no
clusive to thermodynamic formulations~see, e.g., Dorogovt-
sev and Mendes@11#!, such a formulation is a very powerfu
tool to describe different phases of random directed n
works, where the presence of directed edges make the
scription in terms of fitness difficult. Considering this ne
work as a thermodynamic system, makes it simple
understand, provided we appropriately interpret the therm
dynamic parameters.
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